使用全球街机iPhone人群的信用指数不抵魅族和华为手机的拥有者?你没看错,这是来自P2P平台拍拍贷最新发布的《个人无抵押小额信贷市场发展报告》中的数据。利用互联网五花八门的社交数据,来评价个人的信用级别眼下,这种大数据的风控模式正在国内悄然流行起来。

  粉丝多100,信用风险降一成

  对拍拍贷而言,目前互联网行为、社交关系、网络黑名单数据信息已经占P2P个人无抵押小额信贷的信用评分也即纯线上风控信用审核的60%,而传统的信贷审核信息只占40%。拍拍贷CEO张贪玩棋牌娱乐俊告诉记者,一般而言,传统银行考察借款人70至80个数据维度,我们仅围绕互联网层面选取的维度就已经超过400个。

  在拍拍贷的报告中,在年龄与信用的表现上,30岁至40岁的群体信用最高,40岁至50岁群体次之,90后群体信用最低;而在学历与信用关系的表现中,本科及以上学历人群信用最好,大专学历人群次之,高中学历人群信用高于初中及以下人群信用指数。有意思的是,用户填身份证号或者银行卡号的速度与信用逾期关系密切。根据大数据分析,填写速度在13秒的借款者信用情况更优,填写速度每慢一秒或者快一秒,逾期风险概率就会上升。

  互联网贪玩棋牌娱乐的社交数据也与信用亲密相关拥有100个粉丝的借款者可以被认为信用基本可信,同时贪玩棋牌娱乐借款人每增加100个粉丝,其借款逾期风险概率就下降10%。手机号使用年限越长,其逾期的风险概率越低。其中手机号使用一年以下的借款者,就较使用一年以上的借款者,逾期风险概率提升20%。而从使用手机的种类来看,使用魅族手机的人群信用指数最高,华为和三星用户的信用指数紧随其后,全球街机iPhone的用户则排在中等位置。另外,小米用户信用指数居中下水平,低于使用Vivo和OPPO这两大国产机的人群,酷派和联想用户信用指数排名靠后。

  大数据不能取代线下信息

  目前,阿里、腾讯、京东由于坐拥电商的交易数据、社交信息数据等,都在试水利用大数据来搭建信用评价体系。但事实上,基于社交网络上的数据来进行信用评分、描绘一个人的画像,在国际上也没有成功的先例。那么,互联网社交数据究竟靠谱吗?

  作为统计、概率领域的权威专家,美国普林斯顿大学运筹与金融工程系主任范剑青日前在复旦大学管理学院接受记者专访时表示:大数据肯定对于信用评估非常有帮助,比如在网上购买了什么东西、社交网络上有哪些朋友、你的朋友的违约程度,把这些相关数据整合在一起,显然可以勾勒出一个人基本的信用情况。但我认为,这也不太可能完全取代传统的数据收集方法,因为人们在网上的行为跟平时在网下的行为不完全是一样的。

(作者:贪玩棋牌娱乐)

本文地址:http://www.charliestella.com/fengshui/2020/0915/1242.html

上一篇:信息技术点亮“智慧城市”
下一篇:九三学社广东省委调研组到我厅进行“整合科技资源,提高广东科技创新能力”专题调研